skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quesada-Perez, Fabio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract No-take marine protected areas (MPAs) can mitigate the effects of overfishing, climate change and habitat degradation, which are leading causes of an unprecedented global biodiversity crisis. However, assessing the effectiveness of MPAs, especially in remote oceanic islands, can be logistically challenging and often restricted to relatively shallow and accessible environments. Here, we used a long-term dataset (2010–2019) collected by theDeepSeesubmersible of the Undersea Hunter Group that operates in Isla del Coco National Park, Costa Rica, to (1) determine the frequency of occurrence of elasmobranch species at two depth intervals (50–100 m; 300–400 m), and (2) investigate temporal trends in the occurrence of common elasmobranch species between 2010 and 2019, as well as potential drivers of the observed changes. Overall, we observed 17 elasmobranch species, 15 of which were recorded on shallow dives (50–100 m) and 11 on deep dives (300–400 m). We found a decreasing trend in the probability of occurrence ofCarcharhinus falciformisover time (2010–2019), while other species (e.g.Taeniurops meyeni,Sphyrna lewini,Carcharhinus galapagensis,Triaenodon obesus, andGaleocerdo cuvier) showed an increasing trend. Our study suggests that some species likeS. lewinimay be shifting their distributions towards deeper waters in response to ocean warming but may also be sensitive to low oxygen levels at greater depths. These findings highlight the need for regional 3D environmental information and long-term deepwater surveys to understand the extent of shark and ray population declines in the ETP and other regions, as most fishery-independent surveys from data-poor countries have been limited to relatively shallow waters. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025